
18/8/05 Ruth Aylett

•

18/8/05 Ruth Aylett

AI Planning in a Chemical Plant Domain
R.S.Aylett1, J.Soutter2, G.Petley1, P.W.H. Chung3, A.Rushton3

Abstract This paper discusses the issues involved in applying
a generic AI planner to the problem of generating plant
operating procedures for chemical process plant. It considers
the problem of providing the correct planning facilities,
concentrating on dealing with flow of chemicals, and proposes
the use and integration of a special purpose planner for valve
sequencing. It goes on to consider the knowledge engineering
issues using a sample chemical plant to illustrate the solutions
adopted.
1 INTRODUCTION
AI Planning has been actively researched since the 1970s and
STRIPS [8], yet, unlike other knowledge-based systems, has
a small number of commercial successes and is still not
thought of outside the AI Planning Community as a
technology ripe for real-world application. In this paper we
discuss the application of hierarchical non-linear planning to
a real-world domain not previously considered by the AI
Planning Community (though tackled by several groups in
the Chemical Engineering Community [1, 6, 9, 10, 11, 13,
14]). This domain is the generation of operating procedures
for continuous process plant in the chemical industry.

We argue that two areas must be tackled in order to apply
a planner to a real-world domain, one related to specificity
and one to generality. Firstly, there must be a match
between the facilities offered by the planner and the key
characteristics of the domain - the planner must be
adequately specific. Failing this it will either be impossible
or take far too long to solve problems within the domain.

Secondly, the knowledge engineering issues must be dealt
with so that it is possible to reapply the system to a number
of distinct problems within the domain - the planner must
be adequately generic. Failing this, the effort required may
outweigh the benefits of applying it [4].

We briefly describe the nature of plant operating
procedures. We then characterise the domain by looking at
the key planning problems within it. We discuss how CEP -
the Chemical Engineering Planner - deals with these
problems, concentrating on issues relating to flow. Finally
we look at the application of CEP to a particular plant - the
Double Effect Evaporator (DEE) - and discuss the knowledge
engineering lessons learned.
2 PLANT OPERATING PROCEDURES
All industrial plants require an extensive set of operating
procedures which define the steps required - for example - to
start the plant up, to shut the plant down, to isolate pieces
of equipment for maintenance or to deal with emergency
situations. Steps may be carried out manually by human
operators, or some of them may be embodied in the plant
control system, depending on the level of automation. It is
clearly vital for reasons both of safety and efficiency that
procedures are of a high quality.

In the chemical process industry, a multi-disciplinary

commissioning team is normally responsible for defining
sets of procedures, taking of the order of two man-years of
effort. If operability problems are uncovered during this
work, late changes to the design of the plant may result,
sometimes while the plant is actually being constructed.
These are the motivations for the development of computer-
based tools to aid in the authoring of operating procedures.

There is an obvious match between a sequence of
operating procedure steps and the output of an AI planner. In
the INT-OP (INTegrating OPerability) project we apply
state-of-the-art AI hierarchical non-linear planning techniques
to the generation of such procedures. To do this
successfully, it has been necessary to think carefully about
the characteristics of the process plant domain.
3 CHARACTERISING THE DOMAIN
Little work has been carried out in characterising planning
domains, especially compared to other task types such as
diagnosis. However in [2], we make a start by characterising
planning domains in terms of TASK, AGENT and
ENVIRONMENT together with the relationships between
them, as shown in Figure 1.

Of the significant attributes and relationships discussed in
[2], this domain has four. The first is that a TASK cannot
be entirely characterised by the desired end-state; intermediate
states are also important. In a process plant it is not only
important that the plant arrives at, say, its start-up state, it
is equally important that it does not pass through any unsafe
states along the way. For example, a ‘successful’ start-up
which vented poisonous gases to the atmosphere or
contaminated an expensive catalyst with steam would be
unacceptable. A planner must allow unsafe states to be
excluded from valid plans.

A second domain characteristic is the highly
interconnected character of its ENVIRONMENT. In a robot
blocks world, removing one block normally has no effect on
the other blocks in the domain (as long as blocks are only
taken from the top of piles). In a process plant, the
significant effect of opening or shutting a valve is not that
the state of the valve changes, but that, depending on the
state of the rest of the plant at the time, one or more
chemical flows may be started or stopped. The
interconnectedness of the domain is reflected in the particular

1. IT Institute, University of Salford
2. BG Technology Centre, Loughborough
3. Chem. Eng. Dept, Loughborough University

TASK

AGENT ENVIRONMENT

Planning Specification

Execution
Figure 1 Planning Domains

18/8/05 Ruth Aylett

properties of flow.
Flow plays as fundamental a role in a chemical plant

domain as movement does in a robotic domain. Just as
robot letter delivery can be decomposed into a sequence of
MOVE operations, so could the Haber Process for making
ammonia be decomposed into FLOW of chemicals. Does
this mean that FLOW can be handled in much the same way
as robot route planning?

In fact FLOW differs from robot route planning in many
significant ways. Firstly, while a MOVE action can be
thought of as directly moving the robot along a portion of
its route, FLOW is produced as a side-effect of valve (and
pump) operations. Secondly, while a robot moves only
along the route planned for it, flow will occur at all
junctions off the chosen route not specifically blocked.
Thirdly, a flow will continue once it is started until it is
explicitly stopped. Fourthly, more than one chemical may
pass down the same route simultaneously - for example in
the Haber process hydrogen and nitrogen are merged into one
flow. Finally, a flow route is contaminated with the flowing
chemical even after the flow has stopped. These differences
are expressions of interconnectedness and must be handled if
planning is to be successful.

A further domain characteristic is that the time to
complete a TASK and the time taken by each action given to
the AGENT for execution is very different. Starting up a
plant takes hours - sometimes more than a day. An
individual valve operation may take seconds. This difference
in granularity indicates that hierarchical planning rather than
goal reduction is needed.

A final characteristic indicating a need for hierarchical
planning is the size of ENVIRONMENT. A real-world
process plant contains hundreds to thousands of components,
and without an abstraction hierarchy planner performance is
likely to be unacceptably low. We note that current manual
generation of plant operating procedures also makes
substantial use of decomposition hierarchies.
4 THE CHEMICAL ENGINEERING PLANNER
The Chemical Engineering Planner, CEP, has been
developed over the last five years as a tool for operating
procedure synthesis (OPS) [16]. It divides the tasks involved
in OPS into three areas: planning using operators, the
handling of safety considerations and valve sequencing.
4.1 Operators
CEP provides three types of operators: expandable operators;
primitive operators; and macro operators. In an expandable
operator, like this operator to start up a vacuum pump:

operator StartVacuumPump
{ vacpump ?vac;

inlet ?source;
gas ?gas;
chemical ?chem;

pair supplyChem, ?source : ?gas;
expand

active(?vac);
using

flowToMix(?source, out, ?vac, in, ?chem, ?gas, fill);
end}

quantities beginning with ? are variables to be instantiated
during planning, and act like a form of inference rule,
allowing the expand goal to be rewritten in the form of
the using goal(s).

Primitives, like this operator to operate a hand valve:

operator OperateHandValve
{ aperture ?state1;

aperture ?state2’
hand ?h;

?state1 != ?state2
achieve

aperture of ?h is ?state2
using

aperture of ?h is ?state1;
end;
print(?n) [name of ?state2 is ?n] ‘ valve ‘ ?h;}

are essentially STRIPS operators, in which a print statement
produces an actual step in the final operating procedures.

Macro operators [15] were introduced into CEP for two
main reasons. Firstly, they allow the user to contribute
knowledge about the order in which things should be done
where this is known in advance. Secondly, they allow the
representation of facts which should be protected over time
in a way which STRIPS operators cannot. For example, a
process might require a reaction vessel to be cooled through
several steps involving the adding of a number of chemicals.
A macro operator guarantees that cooling cannot be
interrupted as the other steps occur. Macro operators also
proved vital in our solution to the problems posed by flow,
discussed in Section 5, where more detail of their use is
given.
4.2 Safety
We summarise CEP's handling of safety here - more detail
can be found in [17]. CEP's approach is based on ‘goals of
prevention’, similar in concept to the 'don't disturb' goals of
[19] and to a number of other like suggestions in the
literature. However only two discussions of planning with
this concept have been found in [19] and [10]. A simple
method of handling safety would be to qualify planner
operators with the goals they must not achieve. However
CEP does not modify operators, rather stating goals which
are not to be violated during planning separately as domain
knowledge. For example:

restrictions
{ prevent

state of HeatExchanger1 is started;
state of GlassCooler1 is stopped;

end}
prevents energy entering the DEE plant - because a heater is
on - before there is any way of it leaving the plant through
the cooler.

From a knowledge-engineering perspective, one should
keep all safety-related knowledge together, rather than
scattering it between actions. Furthermore, as discussed
below, incorporating restrictions into actions makes it hard
to define generic planner operators since the safety issues
relating to a physical component are likely to depend on the
plant into which it is incorporated.

When an action is added to the plan, CEP examines it (an
approach first suggested in [14]) to see if it violates a goal
of prevention and if so either adds new preconditions or adds
constraints to the action variables. Thus goals of prevention
are monitored, and modify actions only when a violation
occurs.
5 DEALING WITH FLOW
As argued above, flow - achieved by sequencing open and
close operations on valves - is fundamental to continuous
process plant domains. Previous OPS work in the Chemical
Engineering Community either dealt with valve sequencing

18/8/05 Ruth Aylett

alone [11, 13], or dealt with the planning of the operation of
reaction vessels to the exclusion of valve sequencing [10].
CEP is the first OPS system to combine both.

Several approaches are possible. Firstly, flow may be
handled as a post-processing step to the allocation of
reaction vessels. Secondly, flow may be dealt with like other
aspects of planning through planner operators. Thirdly, flow
may be handled via a sub-planner integrated into the planner.
CEP has adopted this third solution.
5.1 Flow as post-processing

The first approach was adopted in [6] who viewed OPS as
a resource allocation rather than a planning problem. Their
objective was the production of given quantities of given
products, achieved by choosing a process route (sequence of
reactions) to produce each of the required products and then
allocating resources in the form of reaction vessels to each.
In a second phase, steps were added to the procedure to create
the necessary flow paths between the reaction vessels used.

The problem with this approach is that the pipes which
carry a flow are themselves resources. If flow paths are
chosen in isolation then two flow paths may end up sharing
the same pipes mixing of chemicals in dangerous or
undesirable ways. These flows need not overlap temporally:
a flow can contaminate a pipe with a chemical which may
have to be removed before a second flow can be created with
another chemical. Removal of a chemical often involves
washing a pipe out with some neutral substance like water
and in order to get this to the required location in the plant,
sometimes the substance will have to flow through a vessel.
This causes problems because the system is designed to
allocate vessels to tasks only in the first phase of procedure
creation. This indicates that flow cannot be treated as a post-
processing step.
5.2 Flow using operators

We have indicated above why flow is hard to deal with
using the operator approach. A MOVE operator with pre-
conditions at(?Robot,?X),next-to(?X,?Y) and
post-condition at(?Robot,?Y) can be used to find a
route between two distant locations. This will not do for
flow since not only must valves along the chosen flow-route
be opened, valves off the flow-route must also be closed to
stop flow into other parts of the plant. With no explicit
representation of the flow-route, it is hard to close the
correct valves, though the use of axioms, as in UCPOP
[12], has not yet been investigated.

Modelling flow through operators for opening and
closing valves is also problematic. Since flow is a side-
effect which depends on the configuration of the plant, the
STRIPS assumption that all effects of an action are declared
in the operator is very hard to meet. For example, in Figure
3, if valves V2 and V4 are shut, then opening valve V3 will
not result in a flow to the drain.

There are three alternatives. First, a separate operator can
be used to describe the operation of each valve in each
interesting plant state. Second, the operator representation
can be enhanced to allow the effects of opening a valve to be
a function of the state of the plant, for example using
conditional effects. Third, operators can be used to represent
the opening of each interesting flow route rather than
representing each individual valve operation.

Each of these three strategies produces operators that are
specific to a particular plant. They simply differ in the

tradeoffs they make between complexity and brevity. In the
first and third cases each operator is simple but a huge
number are required to describe a complex plant. In the
second case, each operator is very complex but only one is
required for each valve in a plant. In all cases, the valve
sequencing problem must be solved anew for each new
plant.

In conclusion, it does not appear possible to create an
operator model of opening a valve that is independent of the
specific valve to be opened. Similarly, it does not appear
possible to create an operator model to start a chemical
flowing through a plant independent of the process plant that
the chemical will flow though.
5.3 Flow with a subplanner
Domain-dependent subplanners go all the way back to [8]
who pointed out that a robot route-finding algorithm could
be represented as a subplanner designed to make (inroom
robot <- X) true. Indeed handling motion planning like
this is even more necessary for manipulators with many
degrees of freedom where computational geometry rather
than predicate calculus is the appropriate formalism. It is
noticeable that all three of the AI Planning Systems
currently used for real-world problems - OPLAN, SIPE, and
PRODIGY - provide support for subplanners, suggesting
that domain-dependent algorithms of this type are not
unusual.

In this section we propose a domain dependent but plant
independent mechanism for creating a flow using a specific
flow reasoning algorithm. The implication of this work is
that some difficult problems are best solved through the
development of domain dependent modules that live within
otherwise domain independent planners.

Incorporating flow handling via a subplanner requires an
algorithm for establishing flow and an interface for
incorporating this into the planning process. We consider
each in turn.

The algorithm that is used by the OPS community to
create a flow of chemical is based on work by [13]. This
algorithm finds a flow route using a maze searching
algorithm; the valves around this route are closed and then
the valves along the route are opened. The advantage is that
each flow of chemical has an easily determined effect - the
contamination of all the units along the flow route by the

The affected units
now contain the
flowing chemical

valves closed
along flowpath

valves closed
around flowpath

CLOSE
POINT

valves open
along flowpath

Protect the valves closed
around the flow path

flow(..)

Figure 2 Subplanner output

18/8/05 Ruth Aylett

chemical being transported.
Clearly the subplanner should be called when the planner

has a goal to create a flow between two points. It will then
find a flow route. At issue then is how the route should be
communicated back to the planner.

The first strategy adopted in CEP was to have the
subplanner directly manipulate CEP's data structures
including CEP's current plan. Thus each time a flow goal
was solved, the subplanner output was translated into a
partial plan with the structure shown in Figure 2, where the
blank box represents the CEP node which originally created
the flow goal. A suitably instantiated version of this
structure was added to the existing CEP plan.

However this strategy proved limiting. For example,
when we decided on a third pass over the flow route so that
pumps could be turned on strictly after a flow path was
opened it was very difficult to make the change because the
translation of the subplanner output into a partial plan was
hard coded into the subplanner itself.

Looking at OPLAN, SIPE and PRODIGY, all three
approach suplanning as a mechanism for performing
mathematical reasoning during planning. Hence it is not
suprising that their subplanners are constrained to behave as
mathematical functions. Subplanners take a fixed length
sequence of arguments as input and produce a result that is
completely determined by these input parameters. The input
parameters are planning objects, that is variables or
constants. A planning variable is used to hold the return
value.

These interfaces cannot however be adopted for a flow
subplanner which differs in significant ways from a
straightforward mathematical function:

• Flow subplanners are non-deterministic. There may be
many flow routes for a particular chemical and any
suitable one may be chosen arbitrarily. All possible
routes should be considered during backtracking to ensure
completeness.
• Flow subplanners may implement partial functions.
There may be no feasible flow paths between two points
or all feasible paths may be blocked by other flows of
chemical. Hence it may not be possible to find a route
for a particular flow of chemical at a particular point in a
plan.
• Unbound input parameters can be important. For
example, if the destination point for a flow is unbound
but constrained to the set of possible drains for a
particular chemical, then the subplanner could
oportunistically choose a suitable drain when looking for
a flow route.
• Flow subplanners return partial plans, not a single
variable. The interface must support their incorporation
into planning.
A macro operator, as mentioned in section 4, was used to

implement this interface, which is general enough to
support other subplanners of like complexity and is therefore
more powerful than the interfaces of SIPE, OPLAN and
PRODIGY.

macro Flow
{
valve *?opened, *?closed;
unit *?contaminated, ?source, ?destination;

call /* subplanner call */
flow(?source, ?destination)

[*?opened, *?closed, *?contaminated];

solve /* Use this operator for */
flow(?source, ?destination, ?chem);

nodes /* Node definitions */
1 instant close;

order /* Temporal ordering of nodes */
1, @;

require /* preconditions */
1, @ aperture of *?closed is closed;
@ aperture of *?opened is open;
@ aperture of *?pumps is open;

achieve /* effects */
1 contains(*?unit, *?port, ?chem);

}
The call section of this macro specifies flow as the

subplanner to be called from the CEP table relating names
to available subplanners. The arguments in round brackets
are input parameters: question marks show that they are
variables rather than constraints. The arguments in square
brackets are return parameters: the star in front of them
indicates they represent a set of objects rather than a single
object.

The call above will find a route between ?source and
?destination and then constrain the variables
*?opened, *?closed and *?contaminated with the
details of the flow route found. For example, *?opened
will be constrained to the set of valves that are to be opened.
The call may have the side effect of binding some of the
input parameters - a particular flow must start from a
particular source and end up at a particular destination.

The remainer of the macro describes the handling of the
variables constrained by the call. For example, at some
point in the partial plan being produced by the subplanner,
the valves around the flow path must be closed. This "close
point'' is referred to in the macro as node1. These valves
must remain closed until the point in the CEP plan which
produced the flow goal in the first place, which we give the
special symbol @. CEP can say then that the flow operator
has the precondition shown, amounting to "the aperture of
all the *?closed valves must be closed at node 1 and remain
closed until @". Thus the macro now performs the
translation of the subplanner output into a partial plan.

The following steps are required to apply this macro:
1) A new set of variables are created according to the type
definitions at the macro head.
2) These variables are constrained so the solve section
matches the goal to be solved.
3) The flow subplanner is called, further constraining the
opened, closed and contaminated variables.
4) The domain of all starred variables is fixed.
5) New nodes are added as described in nodes and their
order is constrained as in order.
6) Preconditions, effects and causal links are added as
described in achieve and require.
7) On backtracking, steps 6, 5 and 4 are undone and the
subplanner is asked for an alternative solution.

18/8/05 Ruth Aylett

6 THE DOUBLE EFFECT EVAPORATOR
After successfully applying CEP to all the ‘toy’ problems in
the literature, with the exception of those requiring numerical
calculations, a Double Effect Evaporator (DEE) test rig
constructed in the Chemical Engineering department at
Loughborough University was tackled [3]. This was to
examine scaling-up issues and the knowledge-engineering
problems involved in applying CEP to a real-world domain.
The target users for CEP are not experts in AI Planning but
chemical engineers working at the design stage. If CEP is to
be useful, it must be possible for such users to apply it to
any chemical process plant - the planner must be sufficiently
general.

Figure 3 shows a simplified schematic for part of the
plant - the Engineering Line Diagram (ELD) giving a more
accurate picture requires a whole sheet of A4 and cannot be
shown here. The DEE set-up contains a larger number of
components than in most previous domains - for example
thirty plus hand valves - while the number of different types
of equipment is also large, with valves, controllers, pumps,
heaters, coolers, evaporators, feed tank, mixing tank and a
barometric condenser.

The DEE functions to remove water from a salt water
solution (brine). It is called 'double effect' because the steam
evaporated off in the first evaporation supplies the energy for
the second evaporation. Because the test rig was used for
teaching, the concentrated brine is returned to the starting
point and mixed with water, returning the brine solution to
its original concentration of salt and allowing the process to
continue indefinitely.

Configuring CEP to a particular plant requires: a model of
the plant in a suitable form; an appropriate set of planner
operators; a set of safety restrictions; a description of the
initial and desired states of the plant (the problem
description). Knowledge acquisition for planning is little
investigated [18] and it has been argued that its costs in time
and effort form a major obstacle to the use of AI planning
Systems [4]. As part of the DEE study, tools were developed
to tackle knowledge acquisition.

6.1 Acquiring the Plant Model
CEP requires a textual plant model described in terms of a
hierarchy of components and the connections between them.
A complete hierarchy for plant components is being
developed and was substantially extended by the DEE
domain. CEP uses a hierarchical frame-based description
developed during earlier work at Loughborough [5].

Manual entry of the instances required for the DEE plant
would be non-trivial: for an industrial scale plant, described
in dozens (at least) of ELDs, inconceivable. An automatic
system was therefore developed for producing the domain
description. A popular package for design, AutoCAD, was
adapted to provide the standard chemical engineering
equipment symbols. When a new piece of equipment is
added to the plant diagram, a text box appears prompting the
user to add the name and connections for it. Thus on
completion of the drawing, the necessary information has
been collected to allow the automatic creation of a file that
describes the plant to CEP. The plant model is generated
automatically for CEP as part of the plant design process
with little extra work for the user.
6.2 Planner Operators
The plant model expresses declarative knowledge about
configuration and structure. Planner operators capture the
behaviour of plant components - procedural knowledge - and
if poorly defined can make planning grossly inefficient,
incorrect or impossible. Creating a set of correct, consistent
and efficient operators for a particular domain is taxing for
experts in AI Planning and could not feasibly be left to
CEP's target users.

Two alternatives exist: to provide a tool that allows non-
expert users to define planner operators from scratch without
the current pain, or to provide a library of planner operators
that can be reused - or at worst slightly adapted - for a
particular plant. The second alternative is currently being
pursued. For it to succeed, CEP planner operators must be
generic to the continuous process plant domain.

This is a plausible target: though each plant is a unique
configuration, the same components are used in many
different plants. One might hope to define generic operators
for each piece of equipment at the leaves of the equipment
hierarchy already mentioned.

In the DEE study we discovered that deficiencies in
planner functionality can often be overcome by creating
problem-specific operators. Our ability to make the operator
set generic acted as a measure of the adequacy of CEP for the
domain. An initial solution, reported in [3], used just under
20 operators to produce a successful start-up procedure
containing 50 steps in under a second on a Sparc 5. However
a number of these operators contained information specific
to the DEE plant which could not be transferred to any other
plant. After improvements in CEP, in particular the
introduction of macro-operators and their use to model flow,
a solution was developed with 13 completely generic
operators: 6 ordinary ones and 7 macros.

Demonstrating that the DEE domain could be solved with
generic operators suggests that the idea of providing an
operator library for users is feasible. Work is now going on
to structure such a library round the equipment hierarchy and
to provide an interface at plant design time for operator
selection.

Feed Tank FT1

Valve
 V1

Heater
HE1

Valve
V2

Evaporator
 EV1

One-way
valve

Valve
V3Drain

D3

Pump
P1

Heater
HE2

Valve
V4

Valve
V6

Valve
V5

STEAM

STEAM

TO 2ND
EVAPORATOR

TO THE
CONDENSER

Figure 3 DEE schematic (part)

18/8/05 Ruth Aylett

6.3 Safety Restrictions
It is possible to misuse safety restrictions to force an
ordering onto planner operators for a particualar task - such
as start-up say - within a particular plant. An example of
this was discussed in [3] for the DEE plant. The introduction
of macro operators into CEP reduced the DEE restrictions
from 13 to 5 - all independent of the overall task being
planned - as ordering information was put where it belonged
in particular macros. An example of such a general
restriction is that preventing a vacuum in the condensor by
stating that the pump must be off if the evaporator is off.
Once the evaporator is on, steam flows into the condensor
giving the pump something to work on. We note however
that this is a plant-specific instance of a more general safety
consideration, that pumps should never be switched on if
there is nothing to pump. There may be scope for a
hierarchy of safety restrictions, which would allow the user
to select those relevant to the components and process in
their particular plant, and this will be investigated further.
6.4 Problem Description
Currently, the initial and final states of the plant are being
entered by hand. Though less trying than a whole plant
model, this is still undesirable. It is clearly possible capture
the initial and final states of the plant from the plant model
and this facility is being integrated into the system.
7 DISCUSSION
CEP has been used to produce operating procedures using AI
planning for a domain more complex than any other
previously attempted. Previous work in the Chemical
Engineering community using state-graphs limited work to
plants containing a handful of valves because of the number
of states they generated: 20 valves each with 2 states
produces 1,048,576 nodes in a state-graph. Other workers
used larger plant [14] but only considered valves and not
vessels. A real-world nuclear fuel processing plant was used
in [6], but this work concentrated on optimising a hand-
generated plan. Only [1] have seriously considered AI
Planning technology but in this case a linear STRIPS engine
only. Work has been carried out examining the links between
planning and qualitative reasoning [7], but using execution
monitoring as a way of dealing with problems rather than
handling them within the planning process itself. CEP
appears to be the only system to date which can produce
procedures for large plant dealing with both vessels and flow.

Further work is however needed in a number of areas. For
example, not all linearizations of a partial plan are equally
acceptable as an operating procedure. It may be the case that
some actions which are ordered in the plan really should be
carried out one after another, without interpolation of other
actions partially ordered with respect to them. For example,
when brine enters a glass preheater, the steam passing
through it starts to condense and requires the shutting of one
valve and the opening of another at virtually the same time
to change the flow to the trap drain. One would not wish
other valve operations elsewhere in the plant along a
different branch of the plan graph to be inserted into this
sequence even though this linerarization is formally
possible. Currently, the plan graph representation is not
sufficiently rich to represent this information.

Secondly, CEP knows only the plant topology, which
means that some knowledge available to human authors of
operating procedures is being neglected. The DEE plant

contains a glass pre-heater. Now it is possible to start up the
plant without using this preheater, and accordingly CEP
originally generated a procedure that did not use it. The
reasons for using the preheater during start-up are: the
temperature of the brine can be increased in stages -
protecting the glass lined vessels, and the control of the
temperature of the brine entering the first evaporator is easier
with two heaters. An expert in operability, seeing that the
design contained a glass preheater, would infer that it was
there for the purpose of start-up and accordingly use it. This
knowledge of design rationale does not appear to be
representable within the confines of planner operators and we
are currently examining the issue in more detail.

A further example of missing knowledge is the spatial
organisation of the plant. For example, if two valves have
to be opened manually, then these actions should be together
if they are geographically next to each other in the plant.
This information is not available from ELDs or the CEP
plant model.

Finally, much work still remains to be carried out in
making CEP usable by a non AI expert. In particular, we
need to demonstrate in practice that planner operators can be
selected from a library for a new plant and result in CEP
producing correct operating procedures.
8 CONCLUSIONS
We argued in the introduction that AI Planners could only be
successfully applied in the real world if they were
sufficiently specific - that is, had the necessary functionality
for the required domain - and were also sufficiently generic -
that is, could easily be reapplied to new problems in the
domain. We have discussed how these two areas have been
tackled so far in our work and shown that real progress can
be made in both cases.
REFERENCES
[1] Aelion, V. & Powers, G.J. (1991) A Unified Strategy for the
Retrofit Synthesis of Flowsheet Structures for Attaining or
Improving Operating Procedures. In: Computers and Chemical
Engineering, vol. 15 no 5, pp349-360, Pergamon 1991
[2] Aylett, R.S. & Jones, S.D. (1996) Planner and Domain:
Domain Configuration for a Task Planner. International Journal
of Expert Systems v9 no2 pp279-318, JAI Press 1996
[3] Aylett, R.S; Petley, G.J; Chung, P.W.H; Soutter, J. &
Rushton, A. (1997) 'Planning and chemical plant operating
procedure synthesis: a case study'. Proceedings, 4th European
Conference on Planning, Toulouse, 1997. Springer-Verlag
Lecture Notes in Artificial Intelligence, to appear.
[4] Chien, S.A; Hill, R.W; Wang, X; Estlin, T; Fayyad, K.V. &
Mortenson, H.B.(1996) Why Real-world Planning is Difficult:
a Tale of Two Applications. In: New Directions in AI Planning,
M.Ghallab & A.Milani, eds, IOS Press, Washington DC 1996
pp 287-98
[5] Chung, P.W.H. (1993) Qualitative Analysis of Process
Plant Behaviour. Proceedings,Industrial and Engineering
Applications of AI and Expert Systems,ed. P.W.H.Chung,
G.Lovegraove & M.Ali, pp277-83 Gordon & Breach 1993
[6] Crooks, C.A. & Macchietto, S. (1992) A Combined MILP
and Logic-Based Approach to the Synthesis of Operating
Procedures for Batch Plants. Chemical Engineering
Communications 114, pp117-144
[7] Drabble, B. (1993) Excalibur: a program for planning and
reasoning with processes. Artificial Intelligence, v62 no1,
pp1-40, Elsevier 1993
[8] Fikes, R.E; Hart, P.E. & Nilsson, N. (1972) "Learning and
Executing Gneralised Robot Plans'. Artificial Intelligence,
3:251-288, 1872

18/8/05 Ruth Aylett

[9] Foulkes, N.R.; Walton, M.J.; Andow, P.K. & Galluzo, M.
(1988) Computer Aided Synthesis of Complex Pump and Valve
Operations. Computers and Chemical Engineering, 12 pp1035-
1044
[10] Fusillo, R.H. & Powers, G.J. (1987) A Synthesis Method
for Chemical Plant Operating Procedures. In: Computers in
Chemical Engineering, vol 11 no 4, pp 369-382, Pergamen,
1987
[11] Lakshmanan, R. & Stephanopolous, G. (1990) Synthesis
of Operating Procedures for Complete Chemical Plants - 3 .
Planning in the Presence of Qualitative Mixing Constraints In:
Computers in Chemical Engineering, vol 14 no 3, pp301-317,
Pergamon 1990
[12] Penberthy, J.S. & Weld, D.S. (19920 ‘UCPOP: A Sound,
Complete, Partial-order Planner for ADL’. Proceedings, KR-92,
pp 324-32
[13] O'Shima, E. (1978) Safety Supervision of Valve
Operations. Journal of Chemical Engineering of Japan. v5
pp390-5, 1978.
[14] Rivas, J.R. & Rudd, D.F. (1974) Synthesis of Failure-
Safe Operations. In: AIChE Journal, vol 20 no 2, pp 320-325,
March 1974.
[15] Sacerdoti, E. (1985) The Non-Linear Nature of Plans.
Proceedings, IJCAI, pp206-14 1985
[16] Soutter, J. (1997) An Integrated Architecture for
Operating Procedure Synthesis. PhD thesis, Loughborough
University, Loughborough LE11 3TU, UK
[17] Soutter, J. & Chung, P.W.H. (1996) Partial Order
Planning with Goals of Prevention. proceedings, 15th
Workshop of the UK Planning and Scheduling SIG, vol 2
pp300-11, John Moores University, Liverpool, UK.
[18] Valente, A. (1995) Knowledge-level Analysis of
Planning Systems. ACM SIGART Bulletin Special Issue, 6(1),
Jan 1995
[19] Weld, D. & Etzioni, O. (1994) The first law of robotics (a
call to arms). Proceedings, 12th National Conference on
Artificial Intelligence, AAAI 94. pp1042-47.

